Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guo-Yi Bai,^a* Chen-Fang Zhang,^a Yue-Cheng Zhang,^b Tao Zeng^b and Jiang-Sheng Li^b

^aCollege of Chemistry & Environmental Science, Hebei University, Hebei 071002, People's Republic of China, and ^bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: baiguoyi@hotmail.com

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.004 Å R factor = 0.041 wR factor = 0.102 Data-to-parameter ratio = 9.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_{10}H_{24}N_2O_2$, was synthesized by *N*-alkylation of 1,2-dichloroethane with (*S*)-2-amino-1-butanol. In the crystal structure, $O-H\cdots N$ and $N-H\cdots O$ link the molecules into sheets in the *bc* plane.

(S,S)-2,2'-(1,2-Ethanediyldiimino)dibutan-1-ol

Received 11 April 2006 Accepted 26 April 2006

Comment

Ethambutol hydrochloride is a widely used chiral antituberculosis agent (Fadnavis *et al.*, 1999). The title compound, (I), which is also called ethambutol, is the precursor of ethambutol hydrochloride and its structure is reported here (Fig. 1 and Table 1).

All bond lengths and angles in (I) are within normal ranges (Table 1; Allen *et al.*, 1987). The crystal structure is stabilized by intermolecular $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds which link the molecules into sheets in the *bc* plane (Fig. 2 and Table 2).

Experimental

The title compound was prepared according to the procedure of Bai et al. (2004). Colourless single crystals of (I) were grown by slow evaporation of a methanol solution.

© 2006 International Union of Crystallography All rights reserved **Figure 1** The molecular structure of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Crystal data

 $C_{10}H_{24}N_2O_2$ $M_r = 204.31$ Monoclinic, $P2_1$ a = 7.157 (3) Å b = 8.440 (4) Å c = 10.193 (5) Å $\beta = 95.631$ (8)° V = 612.7 (5) Å³

Data collection

Bruker SMART-1000 CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.983, T_{\max} = 0.992$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.102$ S = 1.071318 reflections 141 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.419 (3)		
C2-N1-C5 N1-C2-C1	115.4 (2) 108.3 (2)	N1-C5-C6	109.7 (2)
O1-C1-C2-N1 N1-C2-C3-C4	61.4 (3) 162.1 (3)	N1-C5-C6-N2	-173.0 (2)

Z = 2

 $D_x = 1.107 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block, colourless

 $0.22 \times 0.20 \times 0.10$ mm

3317 measured reflections

1318 independent reflections 1049 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_0^2) + (0.0537P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.0476P]

 $\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 294 (2) K

 $R_{\rm int} = 0.026$

 $\theta_{\rm max} = 26.3^\circ$

Table 2

Hydrogen-bond geometry (Å, °).

D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
0.93 (5)	1.95 (5)	2.877 (3)	174 (3)
0.96 (4)	1.82 (4)	2.767 (3)	174 (3)
0.85 (3)	2.23 (3)	3.014 (3)	153 (3)
	<i>D</i> -H 0.93 (5) 0.96 (4) 0.85 (3)	$D-H$ $H \cdots A$ 0.93 (5) 1.95 (5) 0.96 (4) 1.82 (4) 0.85 (3) 2.23 (3)	$D-H$ $H\cdots A$ $D\cdots A$ 0.93 (5) 1.95 (5) 2.877 (3) 0.96 (4) 1.82 (4) 2.767 (3) 0.85 (3) 2.23 (3) 3.014 (3)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) -x, $y - \frac{1}{2}$, -z + 1; (iii) x + 1, y, z.

In the absence of significant anomalous dispersion effects, Freidel pairs were merged. The H atoms of the OH groups were initially

located in a difference Fourier map and were restrained on their atoms with O–H restrained in the range 0.93–0.96 Å and $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm O)$. H atoms bonded to N atoms were refined independently with N–H restrained in the range of 0.85–0.90 Å and $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm N)$. Other H atoms were positioned geometrically and refined using a riding model, with C–H = 0.96–0.97 Å and $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$ or $1.5U_{eq}(\rm methyl C)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Financial support from the Science Project of the Hebei Education Department (grant No. 2005350) and the Science Foundation of Hebei University (grant No. 2005046) is gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bai, G. Y., Chen, L. G., Xing, P., Li, Y. & Yan, X. L. (2004). *Fine Chem.* **21**, 943–945.

Bruker (1997). *SMART* (Version 5.01), *SAINT* (Version 5.01) and *SHELXTL* (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Fadnavis, N. W., Sharfuddin, M. & Vadivel, S. K. (1999). Tetrahedron Asymmetry, 10, 4495–4500.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guo-Yi Bai,^a* Chen-Fang Zhang,^a Yue-Cheng Zhang,^b Tao Zeng^b and Jiang-Sheng Li^b

^aCollege of Chemistry & Environmental Science, Hebei University, Hebei 071002, People's Republic of China, and ^bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: baiguoyi@hotmail.com

(*S*,*S*)-2,2'-(1,2-Ethanediyldiimino)dibutan-1-ol. Corrigendum

In the paper by Bai, Zhang, Zhang, Zeng & Li [Acta Cryst. (2006), E62, o2173–o2174], the data relate to the R,R rather than the S,S enantiomer. The revised ellipsoid plot, packing diagram and selected geometrical data are given here.

Experimental

Data collection

 $R_{\rm int}=0.029$

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0546P)^2]$	$(\Delta/\sigma)_{\rm max} = 0.002$
+ 0.0456P]	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ \AA}^{-3}$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

O1-C1	1.419 (3)		
C2-N1-C5 N1-C2-C1	115.4 (2) 108.3 (2)	N1-C5-C6	109.7 (2)
O1-C1-C2-N1 N1-C2-C3-C4	-61.4 (3) -162.1 (3)	N1-C5-C6-N2	173.0 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1 \cdots N2^{i} \\ O2 - H2B \cdots N1^{ii} \\ N1 - H1C \cdots O2^{iii} \end{array}$	0.93 (5)	1.95 (5)	2.877 (3)	174 (3)
	0.96 (4)	1.82 (4)	2.767 (3)	174 (3)
	0.85 (3)	2.23 (3)	3.014 (3)	153 (3)

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z + 1; (ii) 2 - x, $y + \frac{1}{2}$, -z + 1; (iii) x - 1, y, z.

Figure 1

The molecular structure of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.

All rights reserved

© 2007 International Union of Crystallography

Figure 2 Packing diagram for (I), with hydrogen bonds shown as dashed lines.